Probing the structure of the infectious amyloid form of the prion-forming domain of HET-s using high resolution hydrogen/deuterium exchange monitored by mass spectrometry.

نویسندگان

  • Alexis Nazabal
  • Marie-Lise Maddelein
  • Marc Bonneu
  • Sven J Saupe
  • Jean-Marie Schmitter
چکیده

The HET-s prion protein of Podospora anserina represents a valuable model system to study the structural basis of prion propagation. In this system, prion infectivity can be generated in vitro from a recombinant protein. We have previously identified the region of the HET-s protein involved in amyloid formation and prion propagation. Herein, we show that a recombinant peptide corresponding to the C-terminal prion-forming domain of HET-s (residues 218-289) displays infectivity. We used high resolution hydrogen/deuterium exchange analyzed by mass spectrometry to gain insight into the structural organization of this infectious amyloid form of the HET-s-(218-289) protein. Deuterium incorporation was analyzed by ion trap mass spectrometry for 76 peptides generated by pepsin proteolysis of HET-s-(218-289). By taking into account sequence overlaps in these peptides, a resolution ranging from 4-amino acids stretches to a single residue could be achieved. This approach allowed us to define highly protected regions alternating with more accessible segments along the HET-s-(218-289) sequence. The HET-s-(218-289) fibrils are thus likely to be organized as a succession of beta-sheet segments interrupted by short turns or short loops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibril elongation mechanisms of HET-s prion-forming domain: topological evidence for growth polarity.

The prion-forming C-terminal domain of the fungal prion HET-s forms infectious amyloid fibrils at physiological pH. The conformational switch from the nonprion soluble form to the prion fibrillar form is believed to have a functional role, as HET-s in its prion form participates in a recognition process of different fungal strains. On the basis of the knowledge of the high-resolution structure ...

متن کامل

Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold

In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with...

متن کامل

Burial of the polymorphic residue 129 in amyloid fibrils of prion stop mutants.

Misfolding of the natively α-helical prion protein into a β-sheet rich isoform is related to various human diseases such as Creutzfeldt-Jakob disease and Gerstmann-Sträussler-Scheinker syndrome. In humans, the disease phenotype is modified by a methionine/valine polymorphism at codon 129 of the prion protein gene. Using a combination of hydrogen/deuterium exchange coupled to NMR spectroscopy, h...

متن کامل

Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion

The formation of amyloid aggregates is related to the onset of a number of human diseases. Recent studies provide compelling evidence for the existence of related fibrillar structures in bacterial inclusion bodies (IBs). Bacteria might thus provide a biologically relevant and tuneable system to study amyloid aggregation and how to interfere with it. Particularly suited for such studies are prot...

متن کامل

Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.

A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 14  شماره 

صفحات  -

تاریخ انتشار 2005